Quotient Module of Z-module1
نویسندگان
چکیده
In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of Z-module.
منابع مشابه
Submodule of free Z-module1
In this article, we formalize a free Z-module and its property. In particular, we formalize the vector space of rational field corresponding to a free Z-module and prove formally that submodules of a free Z-module are free. Z-module is necassary for lattice problems LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this arti...
متن کاملTorsion Z-module and Torsion-free Z-module1
In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lovász) base reduction algorithm [20], cryptographic...
متن کاملQuotient Hilbert Modules Similar to the Canonical Hilbert Module
Let H m be the reproducing kernel Hilbert space with the kernel function (z, w) ∈ B×B → (1− m ∑ i=1 ziw̄i) . We show that if θ : B → L(E , E∗) is a multiplier for which the corresponding multiplication operator Mθ ∈ L(H m ⊗ E , H 2 m ⊗ E∗) has closed range, then the quotient module Hθ, given by · · · −→ H m ⊗ E Mθ −→ H m ⊗ E∗ πθ −→ Hθ −→ 0, is similar to H m ⊗F for some Hilbert space F if and on...
متن کاملm at h . FA ] 1 2 O ct 2 00 6 EQUIVALENCE OF QUOTIENT HILBERT MODULES – II RONALD
For any open, connected and bounded set Ω ⊆ C m , let A be a natural function algebra consisting of functions holomorphic on Ω. Let M be a Hilbert module over the algebra A and M0 ⊆ M be the submodule of functions vanishing to order k on a hypersurface Z ⊆ Ω. Recently the authors have obtained an explicit complete set of unitary invariants for the quotient module Q = M ⊖ M0 in the case of k = 2...
متن کاملEquivalence of quotient Hilbert modules
Let M be a Hilbert module of holomorphic functions over a natural function algebra A (Ω), where Ω ⊆Cm is a bounded domain. Let M0 ⊆M be the submodule of functions vanishing to order k on a hypersurface Z ⊆ Ω. We describe a method, which in principle may be used, to construct a set of complete unitary invariants for quotient modules Q = M ⊖M0. The invariants are given explicitly in the particula...
متن کامل